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Supplementary Methods 
 

Tissue samples, transcriptome datasets and quality control (QC) 

For the Laboratory of Translational Genomics (LTG) dataset, 1 μg RNA (RIN scores >7.5) 

isolated from 95 fresh frozen histologically normal pancreatic tissue samples (all from 

individuals of European ancestry) with the Ambion mirVana kit, underwent massively parallel 

sequencing at the National Cancer Institute’s CCR Sequencing Facility as previously described. 

The project was approved by the Institutional Review Boards of each participating institution as 

well as the NIH. At each participating institution, samples were confirmed to be non-tumorous 

and contain ≥80% epithelial component by histological review by a pathologist and macro-

dissected when needed (1). Briefly, RNA sequencing was performed on the Illumina HiSeq 2000 

sequencing platform using TruSeq v3 chemistry for paired-end sequencing. The average 

sequence depth was ~300 million mapped reads per sample (1). Alignment to the human 

reference genome GRCh37/hg19 was performed using STAR v2.4.2a (2) as per the GTEx 

pipeline, based on the GENCODE v19 gene annotations. Gene-level expression quantification 

was collapsed to a single transcript model for each gene using an isoform collapsing procedure, 

comprising the following steps as in the GTEx pipeline (3): (i) exons associated with transcripts 

annotated as “retained_intron” and “read_through” were excluded; (ii) exon intervals 

overlapping within a gene were merged; (iii) the intersections of exon intervals overlapping 

between genes were excluded; (iv) the remaining exon intervals were mapped to their respective 

gene identifier and stored in a GTF format. After converting gene read counts to transcripts per 

million (TPM) (4), genes were included in the analysis based on expression thresholds > 0.1 
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TPM in ≥ 10 samples and > 5 reads in ≥ 10 samples. The expression data were normalized as 

follows: (i) expression values were quantile-normalized to the average empirical distribution 

observed across samples; and (ii) for each gene, expression values were inverse quantile-

normalized to a standard normal distribution across samples.  

For the Genotype-Tissue Expression (GTEx) dataset, RNA-sequencing was performed on 

the Illumina HiSeq 2000/2500 system, generating gene read counts for 11,688 tissue samples 

derived from 635 individuals through a rapid autopsy program, as previously described (average 

sequence depth ~100 million mapped reads per sample) (3). Gene read counts for 220 pancreatic 

tissue samples were obtained through controlled access (phs000424.v7.p2). Based on our 

ancestry analysis (described below), 174 subjects of European ancestry were available for further 

analysis. QC and normalization procedures were performed in the same manner as described 

above for the LTG dataset. 

The LTG and GTEx pancreatic transcriptome datasets were combined (at the TPM level) for 

genes with matching Ensembl gene IDs; genes expressed (at the threshold described above) in 

only one of the datasets were excluded. We further performed QC and normalization for the 

combined dataset (n = 269) using the approach described above. 

 

Genotype data and quality control 

DNA samples for the LTG pancreatic tissue dataset were isolated from blood (Mayo Clinic), 

histologically normal fresh-frozen pancreatic tissue samples (Penn State) or histologically 

normal fresh-frozen spleen or duodenum tissue samples (Memorial Sloan Kettering) using the 

Gentra Puregene Tissue Kit (Qiagen), and genotyped on the Illumina OmniExpress or Omni1M 

array at the Cancer Genomics Research Laboratory of the Division of Cancer Epidemiology and 

Genetics, National Cancer Institute, NIH (1). Ancestry was assessed using the GLU struct.admix 

module (5) and samples with < 80% European ancestry were excluded. The following quality-

control metrics were applied prior to imputation: SNPs with call rates < 95%, minor allele 

frequency (MAF) < 0.01 or Hardy Weinberg Equilibrium (HWE) P < 1x10-6 were excluded 

using VCFtools; after checking strand, alleles, position, reference/alternative assignments and 

frequency differences with 1000 Genomes reference panel (1KG,Phase3, version 80) (6), SNPs 

with allele frequency differences > 0.2 between our data and 1KG, those not available in the 

1KG panel, or A/T and G/C variants on ambiguous DNA strand (MAF > 0.4) were excluded. 
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Samples with call rates < 90% were excluded using PLINK (7). After genotype quality control, 

genotypes were imputed using the 1000 Genomes imputation reference dataset via the Michigan 

Imputation Server (8). Post-imputation variants with MAF < 0.05, imputation quality score (R2) 

< 0.5 or duplicated variants were removed by PLINK (7).  

DNA isolation protocols and sample quality-control metrics for the Genotype-Tissue 

Expression (GTEx, v7) project have been described elsewhere (3). In brief, whole genome 

sequencing (WGS) was performed by the Broad Institute’s Genomics Platform on DNA samples 

at an average coverage of 30X with Illumina HiSeq 2000/X-Ten. Genotypes derived from WGS 

for the 635 individuals included in GTEx were obtained via controlled access from dbGaP 

(phs000424.v7.p2). Samples with < 80% European ancestry were excluded based on analysis 

using the Genotyping Library and Utilities (GLU) struct.admix module (5), resulting in a total of 

174 individuals with both genetic data and gene expression data for pancreatic tissue samples 

available for analyses. Variants with call rates < 95% or MAF < 0.01 were excluded using 

VCFtools (9).  

Genetic variants from the GTEx (n = 8,130,638 variants) and LTG (n = 6,475,451 variants) 

expression datasets were annotated with rsID numbers based on dbSNP (v150) and the human 

reference genome GRCh37/hg19 (10) by BCFtools (11) using genome positions and alleles as 

matching criteria. The two datasets were combined for variants with matching positions and 

alleles (n = 5,119,190 variants), and genotypes unique to only one of the datasets were excluded. 

For model building using FUSION (12), variants not present in the 1000 Genome European 

populations (6) were excluded from further analysis. For model building using MetaXcan (13, 

14), variants absent in HapMap (15) or with any missing genotypes (n = 645,774) were excluded 

from further analysis.  

 

Covariates controlling for ancestry and experimental confounders in gene expression 

prediction model building 

After removing genomic regions of extended high LD (such as the HLA region) and pruning 

variants based on LD (using the plink.prune module in PLINK with 50 kb and 5 variants for each 

step size, and r2 ≥ 0.2 to exclude variants), we calculated principal components (PCs) using 

SNPRelate (16). The gene expression values were adjusted for the top 5 PCs, the Probabilistic 

Estimation of Expression Residuals (PEER) factors (17), as well as gender. The number of PEER 
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factors was chosen according to the number of samples (n) as per GTEx (3): 15 PEER factors 

were used for the LTG pancreas dataset, 30 for GTEx pancreas (v7) and 45 for the combined 

pancreas dataset.  

 

Building pancreatic tissue gene expression prediction models 

To build robust gene expression models for pancreatic tissues, we used genome-wide 

genotype and RNA-seq pancreas transcriptome data from individuals with European ancestry for 

the LTG, GTEx (v7) and combined LTG + GTEx datasets. The LTG dataset is derived mostly 

from histologically normal pancreatic tissue samples that are adjacent to pancreatic tumors, 

whereas the GTEx dataset is derived from individuals who do not have a diagnosis of pancreatic 

cancer.  

Prediction models were computed using the following four linear methods included in 

FUSION (12) and the best model was selected for the association test: (i) least absolute 

shrinkage and selection operator (LASSO) (18), a penalized regression method using the L1 

norm as the penalty function; (ii) elastic-net regression (Enet) (19), a penalized regression 

approach with a mixing parameter of 0.5, using the weighted average of the L1 and L2 norms; 

(iii) best linear unbiased predictor (BLUP) (20), which estimates the effect sizes of all SNPs in 

the locus jointly using a single variance component; and (iv) Bayesian sparse linear mixed model 

(BSLMM) (21), which estimates the underlying effect size distribution and then fits all SNPs in 

the locus jointly. For BLUP and BSLMM, prediction was done over all post–QC SNPs using 

GEMMA (21). BLUP and BSLMM both perform shrinkage of the SNP weights but not variable 

selection (12), so all SNPs are included in the predictor. For each gene, variants +/-500kb of the 

gene boundary, as defined by GENCODE v19 gene annotations, were used to estimate cis-SNP-

heritability. Only protein-coding genes, long non-coding RNAs (lncRNAs), processed 

transcripts, immunoglobulin genes and T-cell receptor genes, as defined by GENCODE v19, 

were extracted for model building. Genes with nominally significant cis-SNP-heritability (LRT P 

< 0.05) and cross-validation R2 for the best performing model of > 0.01 were retained, and the 

genotypes were used to train TWAS prediction models using Enet, LASSO, BLUP and BSLMM 

models. Five-fold cross-validation was performed for each model. This resulted in 2,827, 4,992 

and 5,902 gene expression prediction models (prediction performance R2 ≥ 0.01) in the LTG, 
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GTEx and the combined LTG + GTEx datasets, respectively. Among these, 41%, 18%, 14% and 

27% were derived from LASSO, Enet, BLUP and BSLMM, respectively. 

As a complementary analysis, the prediction models for the LTG, GTEx (v7) and combined 

pancreas datasets were computed independently in S-PrediXcan (14) (a component of MetaXcan 

(13)) using genome-wide genotype and RNA-seq pancreas transcriptome data from the same 

European ancestry samples. We performed the following model building pipeline for the LTG 

and combined (LTG and GTEx) datasets, and obtained the prediction models trained on WGS 

genotypes (after imputing missing genotypes) for pancreas European GTEx (v7) from PredictDB 

(http://predictdb.org/) (14). Genetically regulated expression for each gene was estimated for 

SNPs within +/- 1 Mb of the gene boundaries, as defined by GENCODE v19 gene annotations. 

Only protein-coding genes, long non-coding RNAs (lncRNAs), processed transcripts, 

immunoglobulin genes and T-cell receptors defined in the GENCODE v19 gene annotation were 

extracted for model building. The expression prediction model for each gene using the Enet 

method was implemented in the glmnet R package, with a ridge-lasso mixing parameter of α = 

0.5 and a penalty parameter lambda chosen through 10-fold cross-validation (13). We retained 

models with an average Pearson correlation higher than 0.1 between the predicted and observed 

expression during nested cross validation (equivalent to R2 > 0.01) and the estimated p value < 

0.05. This resulted in gene expression models for 2,440, 4,763 and 5,775 genes from the LTG, 

GTEx and combined LTG + GTEx datasets, respectively. 

    To assess statistical power for the TWAS, we simulated gene expression and GWAS 

summary statistics using genotype data from 22,330 individuals from GWAS (PanScan I+II, 

PanScan III and PanC4). For the PanC4 GWAS dataset we used the dbGAP dataset 

(phs000648.v1.p1) that we obtained through controlled access. We randomly selected 100 genes 

and included their cis-SNPs (+/- 1Mb from each gene) from the GWAS. We randomly selected 

269 individuals from the GWAS as our expression panel using the twas_sim tool 

(https://github.com/mancusolab/twas_sim). Our simulations had three main parameters: the 

number/percentage of causal SNPs (1, 1% and 10%) for the expression for a given gene in the cis 

region, the fraction of gene expression variance explained by causal SNPs (H2, 0.1, 0.3 and 0.5), 

and the fraction of phenotypic variance explained by the expression of the gene (R2, 0.2 x 10-3, 

0.4x10-3, 0.6x10-3, 0.8x10-3 and 1x10-3). To compute power, we fixed H2 (h2
g) and then varied 

causal SNPs at 1, 1% and 10%, then varied R2 (h2
ge) from 0 to 0.001 and recompute power (100 

http://predictdb.org/
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times per configuration (H2, R2) and then computed how often the TWAS/GWAS tests were 

statistically significant (TWAS P < 2.27x10-6 (0.05/22k); GWAS P < 5x10-8). We then repeated 

this process for different H2 values (0.1, 0.3 and 0.5) (Supplementary Figure 4). In our 

simulations, we assumed that causal SNPs impacted the phenotype through the given gene and 

that the eQTL was a causal mechanism for the trait. If eQTLs do not contribute to the trait under 

study then the power for TWAS is 0, whereas GWAS may have power > 0 because GWAS can 

find associations that are not mediated through expression. 

We also compared model performance across the three expression datasets (LTG, GTEx and 

LTG+GTEx) and the two TWAS methods (FUSION and MetaXcan) and observed good 

correlation (Pearson r ranged from 0.60-0.93 for the different gene expression datasets and from 

0.87-0.98 when comparing FUSION and MetaXcan) (Supplementary Figures 1A, 4C and 4D). 

For genes that were statistically significant using at least one TWAS method (FUSION or 

MetaXcan), the correlation was almost perfect (Person r=0.99) (Supplementary Figure 1B). 

 

Cross-tissue genetically regulated expression models 

We downloaded and used publicly available gene expression prediction models for 48 

different human tissues (n=74-421 samples per tissue; a total 8869 samples from 608 European 

ancestry individuals) from PredictDB (http://predictdb.org/)(14). These models were trained 

using GTEx (v7) data for European participants only, using PrediXcan. For these models, the 

genotype data were imputed using the Michigan Imputation Server (8) with the HRC (Version 

r1.1 2016) as the reference panel (22). Variants for each tissue were filtered based on MAF ≥ 

1%, imputation R2 ≥ 0.8, including only bi-allelic variants with unambiguous strand assignment. 

Variants were mapped to rsID numbers (dbSNP v150) using genomic location and alleles as 

matching criteria. The quantification, QC and normalization of gene expression data for each 

tissue were performed according to the GTEx consortium guideline (3), as per 

https://github.com/broadinstitute/gtex-pipeline. Before training models to predict gene 

expression, gene expression values were adjusted for the following covariates: sequencing 

platform (Illumina HiSeq 2000/X Ten), gender, top 3 PCs, and PEER factors. The number of 

PEER factors was chosen according to the number of samples (N) according to GTEx (v7) 

protocol: 15 factors for n < 150, 30 factors for 150 ≤ n < 250, 45 factors for 250 ≤ n < 350, and 

60 factors for n ≥ 350.  

http://predictdb.org/
https://github.com/broadinstitute/gtex-pipeline
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Association analyses between predicted gene expression and pancreatic cancer risk  

For prediction models derived from FUSION, summary-level based imputation was 

performed using the ImpG-Summary algorithm (23) extended to train on the cis genetic 

component of expression (12). ZGWAS is a vector of standardized effect sizes of SNP for a trait at 

a given cis locus (Wald statistics �̂�𝛽/𝑠𝑠𝑠𝑠(�̂�𝛽)). We imputed the z score of the expression and trait as 

a linear combination of elements of Z with weights WGE. Given the prediction model weights 

WGE, GWAS summary Z scores ZGWAS, and SNP-correlation (LD) matrix V; associations 

between predicted expression and pancreatic cancer risk were estimated using the following 

formula (methodological details in ref (12)).  

                                   

For prediction models derived from MetaXcan, associations between genetically predicted 

gene expression levels and pancreatic cancer risk were estimated using the following formula 

(methodological details in ref (22): 

                                                

where wlg is the weight of SNP l for predicting the expression of gene g, βl and se(βl) are the 

association regression coefficient and its standard error for SNP l in GWAS, and  σl and  σg are 

the estimated variances of SNP l and the predicted expression of gene g, respectively. The 

weights for gene expression predicting SNPs, GWAS summary statistics data, and correlations 

between predictor SNPs were the input variables included in the MetaXcan analyses. The 

performance of MetaXcan has been found to be generally consistent with that of PrediXcan, 

which uses individual-level genetic data (13, 14). The pancreatic cancer GWAS summary 

statistics were based on 9,040 pancreatic ductal adenocarcinoma (PDAC) cases and 12,496 

controls of European ancestry from PanScan and PanC4 (24), details of which have been 

previously described (5, 25-27). All participating studies obtained informed consent from study 

participants and Institutional Review Board (IRB) approvals. The PanScan and PanC4 GWAS 

data are available through dbGAP (accession numbers phs000206.v5.p3 and phs000648.v1.p1, 
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respectively). We used an FDR corrected P-value threshold of < 0.05 for each analysis (i.e. using 

the LTG, GTEx and LTG + GTEx transcriptome datasets in FUSION and MetaXcan). 

Bonferroni correction for multiple testing was also used when indicated (correcting for 2440-

5902 tests (see number of tests in each analysis in Supplementary Figure 2)).  

The estimated inflation of the test statistic was λ=1.227 (LTG), 1.265 (GTEx) and 1.204 

(LTG+GTEx) for FUSION, and λ=1.077 (LTG), 1.169 (GTEx) and 1.189 (LTG+GTEx) for 

MetaXcan. Adjusted to 1,000 case-control pairs, the estimated inflation was λ1000=1.022 (LTG), 

1.025 (GTEx) and 1.019 (LTG+GTEx) for FUSION, and λ1000=1.007 (LTG), 1.016 (GTEx) and 

1.018 (LTG+GTEx) for MetaXcan. The quantile-quantile (QQ) plots are shown in 

Supplementary Figure 3.  

Finally, we used Summary-MulTiXcan (SMulTiXcan) (28) to test associations between 

predicted gene expression levels and pancreatic cancer risk with cross tissue models. Using 

univariate S-PrediXcan results and LD information from a reference panel (1KG), SMulTiXcan  

consists of the following steps: (i) computation of single tissue association results with S-

PrediXcan; (ii) estimation of the correlation matrix of predicted gene expression for the models 

using the LD information from 1KG panel; (iii) discarding components of smallest variation 

from this correlation matrix to avoid collinearity and numerical problems; (iv) estimation of joint 

effects from the single-tissue results and expression correlation; (v) discarding suspicious results 

arising from LD-structure mismatch. The estimated inflation of the test statistic was λ=1.040 for 

the SMulTiXcan analysis; after adjusting to 1,000 case-control pairs this was λ1000=1.004. The 

quantile-quantile (QQ) plot is shown in Supplementary Figure 3. 

 

Summary-based joint/conditional tests   

To assess the extent of residual association of a SNP with pancreatic cancer risk after 

removing genetically predicted expression for genes of interest, conditional SNP association tests 

using GWAS summary statistics were carried out using FUSION (FUSION.post_process.R) 

(12). To assess whether associations between genetically predicted gene expression and 

pancreatic cancer risk were independent of the most statistically significant GWAS-identified 

association signal at each locus (+/- 1Mb of each TWAS gene), we performed conditional 

analyses for the GWAS dataset using GCTA-COJO (29). We then reran FUSION and MetaXcan 

analyses for the pancreas tissue models using updated summary statistics. Note that we were not 
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able to perform conditional analysis in the LTG pancreas dataset for chr17q12 to confirm results 

in the GTEx dataset, as the model for CDK12 did not pass the prediction performance threshold 

(R2≥0.01).  For cross-tissues models, we reran MetaXcan (14) for each tissue after conditioning 

the GWAS analysis on the most statistically significant SNP (multiple independent SNPs were 

used for chr5p15.33) at each locus, and then combined analyses were rerun using SMulTiXcan 

(28).  

 

Transcriptome differences and pathway analyses for TWAS-identified genes 

We assessed transcriptome changes associated with high and low expression of TWAS-

identified genes in the LTG (1) and GTEx (3) pancreatic datasets. This approach was based on 

our recent analysis for NR5A2, where we observed a high correlation between genes that were 

differentially expressed in pancreatic tissues from wild type mice when compared to 

heterozygous KO mice for Nr5a2 (Nr5a2+/+ vs. Nr5a2+/-), and in human pancreatic tissue 

samples in the top vs. bottom quartile of NR5A2 expression using our LTG transcriptome 

datasets (Figure 1g in reference (30)). This correlation was highly statistically significant for 

genes that were upregulated in Nr5a2+/- vs. Nr5a2+/+ mice, and expressed at higher levels in the 

top vs. bottom quartile of human NR5A2 expression (P = 1x10-31 when compared to a random 

list of genes) but not observed for genes expressed at lower levels in Nr5a2+/- mice and the 

bottom quartile of the human pancreatic tissue samples (P = 0.58) (30). We therefore assessed 

transcriptome changes for each of the genes identified from the TWAS using pancreatic tissue 

models, by comparing gene expression for samples in the bottom quartile to the top quartile of 

expression in the LTG (n = 95) and GTEx (n = 174) pancreatic samples using the EdgeR 

package in R (31, 32). For each dataset, gene expression counts were scaled for sequencing depth 

and RNA composition across all samples in each dataset to give normalized counts of the 

trimmed mean of M-values (TMM). Genes with no reads for > 20% of the samples were not 

included in this analysis. Normalized reads were then used to determine the top and bottom 

quartiles of expression for each gene of interest across samples in each dataset. For subsequent 

gene-based analysis, only those samples in the top and bottom quartile (n=24 for LTG and n=44 

for GTEx quartiles) were used. The raw counts for these selected samples for the filtered genes 

were re-normalized for sequencing depth to obtain pseudo-counts which were analyzed using the 

quantile-adjusted conditional maximum likelihood (qCML) method in EdgeR. Differential 
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expression (log2[bottom/top quartile] and P-values) was then assessed using an exact test. Genes 

statistically significantly differentially expressed at FDR < 0.05 and fold-change > 2-fold 

(|logFC| > 1) were included in pathway analyses using DAVID (33, 34) to identify enrichment in 

GO Biological Processes, GO Molecular Functions, and KEGG Pathways. 

 

Data access 

Genotype and RNA-seq data for the NCI LTG eQTL dataset are available from the database 

of Genotypes and Phenotypes (dbGAP, https://www.ncbi.nlm.nih.gov/gap) under accession 

number phs001776.v1.p1. The GTEx dataset (phs000424.v7.p2) as well as the PanScan 

(phs000206.v5.p3) and PanC4 (phs000648.v1.p1) genome-wide association data are available 

through dbGaP. 

  

https://www.ncbi.nlm.nih.gov/gap
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Supplementary Tables and Figures 
 

 

Supplementary Table 1. Characteristics that differ between the FUSION and MetaXcan TWAS 
methods* 

Characteristic FUSION MetaXcan 

Genotype missing rate tolerance for each variant 5% 0% 

SNPs boundaries from each gene  +/- 500kb +/- 1Mb 

Genotype filtering reference 1000G HapMap 

GWAS summary imputation Yes No 

Model training methods LASSO, Enet, BLUP and BSLMM Enet 

Cross-validation (fold) 5 10 

Conditional analysis on predicted genes Yes No 

*Both programs were used using default TWAS settings. 

 

 

 
  



12 
 

 
Supplementary Table 2. Gene expression correlation (Pearson's correlation coefficients (R)) for 
TWAS genes at 2 genomic loci in the GTEx and LTG datasets. 

 

Dataset 
chr17q12 chr16q23.1 

CDK12 and 
PNMT 

PNMT and 
PGAP3 

CDK12 and 
PGAP3 WDR59 and CFDP1 

GTEx 0.09 0.33 0.66 0.80 

LTG 0.09 0.27 0.29 0.52 

 

 
 
 
 
 
 

Supplementary Table 3.  Association results for variants that tag pancreatic cancer risk signals 
on chr5p15.33 in the PanScan – PanC4 GWAS dataset before and after conditional analysis* 

Variants GWAS P-value 

GWAS P-value 
after 

conditioning on 
rs31490 

GWAS P-value 
after 

conditioning on 
rs2736098 

GWAS P-value 
after 

conditioning on 
rs36115365 

GWAS P-value 
after 

conditioning on 
rs35226131 

rs31490 1.28E-17 1 2.47E-08 4.04E-07 2.51E-15 

rs2736098 5.80E-14 3.31E-05 1 3.55E-10 2.93E-16 

rs36115365 6.12E-12 9.25E-03 2.95E-08 1 1.71E-10 

rs35226131 2.19E-08 3.17E-06 8.21E-11 4.54E-07 1 

 
*An additive genetic model was used to perform the association analysis (two-sided test).  
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Supplementary Table 4. Number of genes significantly differentially expressed (Fold change, 
FC > 2, FDR < 0.05) in samples in the top (GeneXhigh) vs. bottom (GeneXlow) quartile of 
expression for each listed gene*  
 

Gene 

GTEx LTG Shared 
Higher in 

top 
quartile 

Higher in 
bottom 
quartile 

Higher in 
top quartile 

Higher in 
bottom 
quartile 

Higher in top 
quartile 

Higher in 
bottom 
quartile 

CELA3B 280 665 3,097 4,056 204 555 
SMC2 99 323 1,616 1,481 57 31 
SMUG1 120 176 1,257 3,963 16 93 
BTBD6 292 46 4,384 2,178 259 22 
HEXA 3,471 2,934 183 168 146 55 
RCCD1 393 127 3,431 4,057 141 64 
PNMT 314 432 204 585 72 100 
CDK12 142 68 3,474 1,742 60 32 
PGAP3 97 240 2,117 3,990 41 164 
SUPT4H1 38 122 1,947 1,599 9 14 
RP11.888D10.3 68 63 13 37 0 1 
PGPEP1 16 125 1,775 3,717 3 93 
INHBA 752 87 4,962 3,250 628 34 
ABO 112 108 626 2,616 7 22 
PDX1 21 104 1,018 2,669 4 33 
KLF5 302 68 614 502 104 17 
WDR59 164 90 1,038 4,523 17 78 

CFDP1 45 232 1,462 3,640 20 136 

 
*The number of genes differentially expressed in samples in the top vs. bottom quartile of expression for each gene 
listed. As we had previously shown for NR5A2 that this approach was highly consistent for genes that were 
upregulated in pancreatic tissue samples from heterozygous knockout mice (Nr5a2+/- as compared to Nr5a2+/+) 
and those expressed at higher levels in the bottom as compared to top NR5A2 expression for human samples 
(NR5A2low vs. NR5A2high samples in LTG dataset) for genes expressed at higher levels in the bottom quartile of gene 
expression (columns 2, 4 and 6 above) we focused the pathway analysis on those genes. 
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Supplementary Table 5. Top pathways enriched in the samples in the bottom vs. top quartile of 
TWAS gene expression in the GTEx and LTG pancreas datasets* 
 

TWAS 
Gene Category Term 

GTEx  LTG 

DE genes 
(n) 

Fold 
Enrichment 

P-
value† 

 Fold 
Enrichment P-value† 

ABO GO BP inflammatory response 18 11.4 1.1E-10  4 4.3E-30 

ABO GO BP cellular response to 
tumor necrosis factor 10 21.8 2.3E-07  3.5 1.5E-05 

ABO KEGG TNF signaling pathway 10 15.5 3.5E-07  2.3 9.2E-03 

ABO KEGG Complement and 
coagulation cascades 9 21.5 4.4E-07  3.4 1.9E-04 

ABO GO BP chemokine-mediated 
signaling pathway 8 27 2.3E-06  5.9 2.9E-11 

ABO GO BP cellular response to 
interleukin-1 8 27 2.3E-06  3.7 7.3E-04 

ABO GO BP immune response 14 8 2.5E-06  4.5 9.8E-44 

ABO GO BP acute-phase response 7 43.1 2.7E-06  3.2 2.3E-01 

ABO GO BP positive regulation of 
neutrophil chemotaxis 6 65.4 3.0E-06  8.5 4.3E-06 

ABO GO MF chemokine activity 7 35.5 6.1E-06  5.6 2.6E-06 

BTBD6 GO BP muscle filament sliding 7 99.8 8.1E-09  2.8 9.8E-01 

BTBD6 GO MF alpha-amylase activity 4 435.6 3.1E-06  16.9 1.3E-01 

CELA3B GO BP inflammatory response 72 6.3 3.8E-33  3.2 6.0E-55 

CELA3B GO BP immune response 70 5.6 1.2E-28  3 2.7E-50 

CELA3B KEGG Staphylococcus aureus 
infection 24 11.5 7.9E-17  4.5 3.5E-21 

CELA3B GO BP cell adhesion 57 4.1 1.4E-16  2.7 1.2E-40 

CELA3B GO BP innate immune response 52 4 1.6E-14  2.4 8.6E-25 

CELA3B GO BP chemotaxis 28 7.7 1.2E-13  3.2 8.7E-16 

CELA3B KEGG Osteoclast 
differentiation 30 5.9 6.1E-13  NA NA 

CELA3B GO BP regulation of immune 
response 32 6 7.4E-13  2.7 5.3E-14 

CELA3B KEGG Cytokine-cytokine 
receptor interaction 37 4.2 1.6E-11  2.7 3.5E-25 

CELA3B GO BP extracellular matrix 
organization 29 4.9 2.3E-09  3.3 6.9E-29 

CELA3B GO BP leukocyte migration 23 6.3 3.6E-09  3.5 1.4E-19 

CELA3B GO BP chemokine-mediated 
signaling pathway 18 8.5 6.4E-09  3.5 8.6E-11 

CELA3B GO BP acute-phase response 14 12 1.4E-08  3.1 5.2E-04 

CELA3B GO BP neutrophil chemotaxis 17 8.6 1.5E-08  3.4 7.9E-10 

CELA3B GO BP signal transduction 77 2.2 1.6E-08  1.8 5.6E-28 

CELA3B KEGG Rheumatoid arthritis 20 5.9 2.3E-08  3 1.4E-12 

CELA3B KEGG Complement and 
coagulation cascades 18 6.8 2.7E-08  3.1 6.9E-11 

CELA3B GO BP cell-cell signaling 31 4.1 2.9E-08  2.4 1.8E-14 

CELA3B GOBP positive regulation of 
neutrophil chemotaxis 11 16.7 4.6E-08  4.9 6.5E-07 

CELA3B KEGG Tuberculosis 27 4 6.8E-08  2 1.1E-07 

CELA3B KEGG TNF signaling pathway 21 5.1 7.1E-08  1.9 8.3E-04 
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CELA3B KEGG Malaria 15 8 7.6E-08  3.8 6.3E-12 

CELA3B GO BP cell chemotaxis 16 8.2 1.0E-07  3.3 1.2E-08 

CELA3B GO BP cellular response to 
lipopolysaccharide 20 5.9 1.6E-07  2.8 2.2E-10 

CELA3B KEGG Chemokine signaling 
pathway 27 3.8 1.8E-07  2.1 1.6E-09 

CELA3B KEGG Hematopoietic cell 
lineage 18 5.5 3.3E-07  3.8 9.5E-22 

CELA3B GO BP 
interferon-gamma-
mediated signaling 

pathway 
16 7.5 3.4E-07  3.7 3.5E-13 

CELA3B KEGG Leishmaniasis 16 5.9 9.9E-07  3.3 1.5E-12 

CELA3B GO MF cytokine activity 24 4.7 1.0E-06  2.5 1.3E-10 

CELA3B GO BP regulation of 
complement activation 11 12.2 1.3E-06  3.6 1.8E-04 

CELA3B GO MF receptor activity 26 4.1 1.4E-06  2.7 9.3E-17 

CELA3B KEGG Amoebiasis 19 4.7 1.5E-06  2.5 8.9E-09 

CELA3B GO BP adaptive immune 
response 21 4.7 2.4E-06  3.2 4.5E-20 

CELA3B GO BP positive regulation of T 
cell proliferation 14 7.8 2.5E-06  4 4.1E-13 

CELA3B KEGG Phagosome 22 3.7 5.0E-06  2.5 1.9E-12 

CELA3B KEGG Cell adhesion molecules 
(CAMs) 21 3.8 5.9E-06  3.1 8.4E-22 

CELA3B GO BP cytokine-mediated 
signaling pathway 19 4.8 8.9E-06  2.2 4.3E-05 

CELA3B GO BP defense response 14 7 9.1E-06  3.3 6.8E-09 

KLF5 GO MF alpha-amylase activity 5 482.3 5.1E-09  NA NA 

PGAP3 GO BP inflammatory response 22 6 1.5E-07  3.2 7.7E-51 

PGAP3 GO BP immune response 22 5.4 5.2E-07  3.1 6.9E-54 

PGAP3 GO BP chemokine-mediated 
signaling pathway 11 16 7.1E-07  3.4 2.7E-10 

PGAP3 GO MF receptor binding 19 5.8 1.6E-06  2.1 1.3E-12 

PNMT GO BP immune response 35 5.1 1.7E-11  4 7.1E-10 

PNMT GO BP inflammatory response 27 4.4 5.0E-07  4.2 5.7E-10 

PNMT GO MF chemokine activity 11 14.2 1.6E-06  4.7 3.2E-01 

PNMT KEGG Rheumatoid arthritis 14 7.3 7.9E-06  8.4 6.8E-11 
RP11888D1

0.3 GO BP keratinization 7 52.1 1.0E-06  NA NA 

RP11888D1
0.3 GO MF structural molecule 

activity 10 15.2 1.3E-06  NA NA 

RP11888D1
0.3 GO BP keratinocyte 

differentiation 7 32.9 8.4E-06  NA NA 

SMUG1 GO BP keratinocyte 
differentiation 12 25.3 7.5E-10  NA NA 

SMUG1 GO MF structural molecule 
activity 16 11 2.3E-09  NA NA 

SMUG1 GO BP keratinization 10 33.3 3.9E-09  NA NA 

SMUG1 GO BP peptide cross-linking 9 28.8 1.4E-07  NA NA 

SUPT4H1 GO BP keratinocyte 
differentiation 11 30.8 9.5E-10  NA NA 

SUPT4H1 GO BP keratinization 9 39.9 1.2E-08  NA NA 

SUPT4H1 GO MF structural molecule 
activity 13 11.8 9.1E-08  NA NA 

SUPT4H1 GO BP peptide cross-linking 8 34 5.0E-07  NA NA 

WDR59 GO BP chemotaxis 12 22 4.2E-09  3 2.8E-12 
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WDR59 GO BP inflammatory response 16 9.5 3.3E-08  3 8.8E-44 

WDR59 KEGG Amoebiasis 10 14.8 1.1E-06  2.2 1.6E-05 

WDR59 GO BP chemokine-mediated 
signaling pathway 8 25.2 6.8E-06  3.3 2.8E-09 

GO BP: GO Biological Process; GO MF: GO Molecular Function. 
* Pathways with Bonferroni adjusted P-values < 1x10-5 in GTEx are shown with corresponding enrichment and P-
values in LTG. All tests were two-sided. 
† Fisher Exact test was used to perform the gene enrichment and functional annotation analysis (two-sided test).  
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Supplementary Table 6. Median gene expression (TMM) for TWAS genes in samples in the 
top and bottom quartile of LTG and GTEx pancreatic datasets and % difference for each gene.  

Gene 
GTEx   LTG 

Top Bottom % Difference  Top Bottom % Difference 

CELA3B 16,980 4,122 76%  23,245 2,084 91% 
NR5A2* 130.78 81.03 38%  136.25 55.74 59% 
PGPEP1 59.59 40.26 32%  39.54 19.1 52% 
PGAP3 42.28 25.18 40%  26.67 14.8 45% 
WDR59 42.05 30.96 26%  23.85 15.72 34% 
CDK12 28.39 20.66 27%  27.89 18.92 32% 
CFDP1 28.09 18.38 35%  26.79 15.55 42% 
HEXA 26.26 18.88 28%  37.48 20.27 46% 
RCCD1 21.35 9.74 54%  10.5 4.49 57% 
SUPT4H1 19.81 14.46 27%  20.94 14.56 30% 
KLF5 18.29 7.95 57%  26.7 8.76 67% 
PDX1 18.06 10.86 40%  16.48 7.25 56% 
SMUG1 15.81 10.76 32%  10.63 6.07 43% 
BTBD6 12.95 7.62 41%  13.37 6.21 54% 
SMC2 7.32 3.76 49%  9.71 5.13 47% 
ABO 6.07 1.24 80%  4.39 0.81 82% 
INHBA 1.44 0.25 82%  38.02 0.54 99% 
PNMT 1.34 0.09 94%  0.82 0.04 95% 
RP11.888D10.3 0.19 0.02 92%  0.16 0.03 81% 

* NR5A2 is not a TWAS gene in this analysis but shown as a reference for the analysis for differentially expressed 
gene in the top and bottom quartiles of gene expression (see Methods). 
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C. 

 
D.  

 
 
 
Supplementary Figure 1: Comparison of gene prediction model performance using different 
TWAS methods and gene expression panels. (A) Pearson correlation for the prediction 
performance (R2) of gene models generated by FUSION and MetaXcan. (B) Person correlation 
for genes that were significant (FDR<0.05) in at least one method (FUSION or MetaXcan). The 
correlation for all prediction models is shown in (C) for FUSION and in (D) for MetaXcan. 
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A.                         FUSION                                     B.                         MetaXcan 

     
 
 
Supplementary Figure 2.  Intersection of gene expression prediction models among LTG, 
GTEx and combined (LTG + GTEx) datasets. Numbers represent the number of gene prediction 
models that pass QC thresholds in one or more of the expression datasets. The overlap for 
models from the FUSION (A) and MetaXcan (B) TWAS analyses, with cross-validation 
performance R2 > 0.01, is shown. 
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Supplementary Figure 3.  Quantile-quantile (QQ) plots for the TWAS analysis using the LTG, 
GTEx, and combined (LTG + GTEx) expression panels in FUSION and MetaXcan, and cross-
tissue expression datasets in SMulTiXcan. Shown are lambda values before (λ) and after 
adjustment to a sample size of 1000 cases and 1000 controls (λ1000) for all seven analyses.  
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Supplementary Figure 4.  Assessing and comparing statistical power for the pancreatic cancer 
TWAS as compared to the GWAS. Three main parameters were used for this analysis: the 
number/percentage (1, 1% and 10%) of causal SNPs for the expression in the cis-region (+/- 
1Mb) for a given gene, the fraction (H2, 0.1, 0.3 and 0.5) of expression variance that is explained 
by causal SNPs, and the fraction (R2, 0.2x10-3, 0.4x10-3, 0.6x10-3, 0.8x10-3 and 1 x 10-3) of 
phenotypic variance explained by the expression of each gene. Colors and shapes correspond to 
the number/percentage of causal variants simulated for TWAS/GWAS. The expression reference 
panel included 269 out-of-sample individuals from a total GWAS sample size of 22,330. Power 
was computed as the fraction of 100 simulations where significant associations were identified. 
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A.                                                                B.  

                               FUSION            MetaXcan 

 
 
 
Supplementary Figure 5.  Comparison of gene expression prediction models between the 
individual LTG or GTEx datasets versus the combined LTG + GTEx dataset. The models from 
FUSION (A) and from MetaXcan (B) with cross-validation R2 > 0.01 and are overlapping 
among LTG, GTEx and combined LTG + GTEx datasets are shown with information about 
improved or reduced performance (R2) in the combined vs. individual datasets. For instance, 
compared with LTG models, the performance for 404 models were reduced while 1,283 
improved in the combined LTG + GTEx dataset. The average differences in R2 were -0.052, 
0.10, -0.044 and 0.048 (FUSION) and -0.057, 0.12, -0.050 and 0.056 (MetaXcan), respectively. 
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B. 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 6: Comparing gene expression prediction model performance between 
FUSION and MetaXcan. (A) The number of gene prediction models with cross validation 
R2>0.01 that have better (orange) or worse (blue) performance in FUSION as compared to 
MetaXcan for LTG, GTEx and the combined LTG+GTEx datasets. Prediction models that have 
higher prediction performance (R2) using FUSION as compared to MetaXcan are shown in 
orange color, while those that have reduced performance in FUSION (i.e. better performance in 
MetaXcan) are shown in blue. A total of 5,730 gene prediction models had improved 
performance using FUSION and 4,267 using MetaXcan. The average differences in R2 were -
0.045 and 0.058 (LTG), -0.033 and 0.038 (GTEx), -0.018 and 0.022 (LTG+GTEx), respectively. 
(B) Gene prediction model overlap is shown for the LTG, GTEx and Combined LTG+GTEx 
datasets between FUSION and MetaXcan. Differences in prediction performance decreases and 
overlap increases as the transcriptome datasets get larger, indicating improved statistical power 
in the combined LTG+GTEx dataset. The number of prediction models that are unique to one 
dataset or shared are listed as numbers (n) and percentages (%). 
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Supplementary Figure 7. TWAS results using cross-tissue expression panels showing effect 
sizes and direction of effect in different GTEx tissues.  
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A.                                                                     B.  
 

 

Supplementary Figure 8.  CELA3B expression in samples in the top and bottom quartiles for 
the GTEx (A) and LTG (B) transcriptome datasets. 
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