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Fig. S1: Results from the association analysis at the 16q23.1 pancreatic cancer risk locus 
after conditioning the analysis on select variants.  The association results from the meta-
analysis of PanScan I, II, III, and PanC4 before (gray) and after conditioning (blue) on: (a) the 
original marker SNP rs13337397, (b) the most significant tag SNP after imputation rs72802365, 
and, (c) the 584 bp genomic insertion/deletion variant in CTRB2. NCBI RefSeq genes within the 
chr16q23.1 TAD as visualized using UCSC genome browser (Hg19) are shown in (d). 
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Fig. S2: The genomic region of the topologically associated domain (TAD) at the 
chr16q23.1 pancreatic cancer risk locus.  NCBI RefSeq genes within the chr16q23.1 TAD are 
visualized using the UCSC genome browser (Hg19). 
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Fig. S3: CTRB2 splicing QTLs at the chr16q23.1 pancreatic cancer risk locus for 
rs72802365 in the LTG (histologically normal) pancreatic QTL dataset.  Boxplots show 
normalized CTRB2 junction reads generated by Leafcutter in LTG pancreas samples for CTRB2 
Exon 5-6 (a), Exon 6-7 (b), and Exon 5-7 (c).  The risk increasing allele (C) is indicated in red.  
Genotype counts are: G/G n=75, G/C n=13, C/C n=2. 
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Fig. S4: A Sashimi plot showing CTRB2 splicing in individuals with different genotypes for 
the CTRB2 exon 6 indel variant.  Sashimi plot of raw RNA-seq exonic read densities from 
representative individuals showing junction reads with: (a) no copies, (b) one copy, and (c) two 
copies, of the CTRB2 exon 6 genomic deletion as visualized using the IGV browser1.  Note the 
difference in RNA-seq read density over exon 6 in samples with 0 (a), 1 (b) and 2 (c) copies of 
the deletion allele. (d), Genomic coordinates (Hg19) and the exon/intron structure of the CTRB2 
gene are shown. 
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Fig. S5: Splicing QTLs for CTRB2 and the 584 bp CTRB2 genomic insertion/deletion 
variant in the LTG and GTEx histologically normal) pancreatic QTL datasets.  The 
boxplots show normalized CTRB2 junction reads from Leafcutter in GTEx samples (a, I/I n=148, 
I/D n=24, D/D n=2) and LTG pancreas samples (b, I/I n =75, I/D n=13, D/D n=2).  I: insertion 
allele, D: deletion allele. The risk increasing allele (deletion) is indicated in red). 
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Fig. S6a: Nucleotide sequence of the CTRB2 exon 6 deletion variant in a 1000G EUR 
sample. Nucleotide sequence of a 1000 Genomes subject identified to be homozygous for the 
CTRB2 Ex6 deletion aligned to the reference sequence reveals a 584 bp deletion. The 
coordinates for the 584 bp deletion are ambiguous due to a repeated sequence at the beginning 
and end of the deleted sequence (marked in blue letters) and could range from Hg19: 
chr16:75,238,611-75,239,194 to chr16:75,238,621-75,239,204. The coordinates in the 
manuscript are listed as Hg19: chr16:75,238,616-75,239,199 +/- 5bp to reflect this ambiguity. 
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Fig S6b: Nucleotide sequence of the CTRB2 exon 6 deletion variant in LTG eQTL samples. 
PCR was performed on genomic DNA from 8 human samples from the LTG eQTL dataset to 
amplify the CTRB2 ex5-ex7 region (primers are listed in Table S3). The upper band represents 
the insertion allele with a 1112 bp product; the lower band represents the CTRB2 exon 6 deletion 
allele with a 528 bp product (top figure). The two CTRB2 exon 6 homozygous del/del samples 
are in lanes 1 and 6. Bands were excised and purified for sequencing (see nucleotide sequence in 
bottom part of Figure S6b below). 
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Fig S6b (continued): Bands from the gel above were excised and purified for sequencing. Top 
line: “Reference” represents the Human Genome Reference sequence (in blue text); “Del/Del” 
represents one of the homozygous CTRB2 exon 6 deletion carriers; “WT/WT” represents a 
sample with no copies of the deletion; “WT/Del top” represents the top band from the PCR for a 
heterozygous WT/del carrier; “WT/Del bott” represents the lower band from a heterozygous 
WT/del carrier. Note the missing 584 bps corresponding to the CTRB2 deletion allele in the 
Del/Del carrier and the bottom band from the WT/del carrier. “N” indicates missing sequencing 
from shorter reads, and non-A, T, C, G, N indicates ambiguous results from the sequencing. 
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Fig. S6c: Ancestral and derived alleles for the CTRB1-exon1/CTRB2-exon1 inversion 
variant. Ancestral and derived alleles for the CTRB1/CTRB2 inversion variant. The nucleotide 
sequence of human CTRB1 and CTRB2 genes on chr16q23.1 is identical apart from exons 1 and 
7. To determine if the Human Reference allele is the inverted or non-inverted allele, we 
compared exons 1 and 7 between human and chimpanzee (Pan troglodytes) by BLAT in the 
UCSC Genome Browser. Note that while the chimp CTRB1 gene (gene on right side in lower 
panel) is named CTRB2, it is listed as “Also known as CTRB1” in NCBI 
(https://www.ncbi.nlm.nih.gov/gene/736467).  Similarly, while the chimp CTRB2 gene (gene on 
left side of lower panel) is named LOC736783, it is listed as “Chymotrypsinogen B” and 
“CTRB2” in NCBI (https://www.ncbi.nlm.nih.gov/gene/736783) under General Protein 
Information. Red tick-marks within the aligned segments of the BLAT track represent 
substitutions with respect to the reference sequence. The top panel shows the BLAT alignment 
of exons 1 and 7 of chimp CTRB2 (LOC736783) and CTRB1 to the hg19 Human Reference 
genome in UCSC Genome Browser. Chimp CTRB1 exon 1 aligns best with human CTRB2 exon 
1 and chimp CTRB2 (LOC736783) exon 1 aligns best to human CTRB1.  The last exon of chimp 
CTRB1 and CTRB2 (LOC736783) align best to their respective human genes. The bottom panel 
shows the BLAT alignment of human CTRB2 and CTRB1 exon 1 and exon 7 to the chimp 
reference genome. This shows that human CTRB1 exon 1 aligns best with chimp CTRB2 
(LOC736783), and human CTRB2 exon 1 aligns best with chimp CTRB1 (listed as CTRB2 in 
chimp browser but is CTRB1 according to NCBI). Also note the large intron 1 of human CTRB1 
(top panel) and chimp CTRB2 (LOC736783, bottom panel). The better alignment of human exon 
1 to the opposite chimp chymotrypsinogen precursor gene, and the fact that the large intron 1 is 
part of CTRB1 in the Human Reference genome but CTRB2 (LOC736783) in the Chimp 
Reference genome, indicates that the human alternate allele is ancestral while the human 
reference allele is the inverted (and derived) allele.  
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Fig. S7: Effect of the CTRB2 exon 6 deletion on chymotrypsin reaction kinetics.  A 
representative experiment showing fluorescence (RFU) as a measure of chymotrypsin activity on 
a synthetic fluorogenic substrate in HEK293T cell lysates after transient transfection with empty 
vector control (black), FLAG-tagged full-length CTRB2 (CTRB2-FL, dark gray), and FLAG-
tagged CTRB2 with the exon-6 deletion (CTRB2-Ex6 del, light gray) plasmids.  The linear 
change in fluorescence over a given time period was used to calculate activity, quantification of 
activity across triplicate experiments is shown in Fig. 3b.   
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Fig. S8: Full western blot images related to Figure 3c for FLAG-tagged CTRB2 expression 
constructs.  Western blot images corresponding to Fig. 3c-d showing: (a) full-length CTRB2 
protein (~28 kDa), and (b) truncated CTRB2 protein (with exon-6 deletion, ~18 kDa). 
Immunoprecipitation (IP) for intracellular proteins was performed using either 10µL (first lane) 
or 100µL (second lane) of lysate; IP for secreted proteins was performed using conditioned 
media after concentration. Protein secretion was assessed by densitometric quantification of 
bands on the gel followed by comparing the amount of protein in the cell lysate (first or second 
lane, band of ~26 kDa) to the media (third lane, bands of ~16 kDa). The trend of less secretion 
for the truncated as compared to the full length CTRB2 proteins was similar for both lysate-
media comparisons.  Bands at ~26 kDa in (a), and ~16 kDa in (b), correspond to the full-length 
and truncated CTRB2 proteins with the 2 kDa signal peptide removed, respectively.  Higher 
bands correspond to the heavy chain of IgG (~50 kDa) from the IP pull-down. 
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Fig S9. Activity and secretion for untagged CTRB2 expression constructs. (a) Chymotrypsin 
activity (µg/mg) calculated for the untagged full-length and Ex6 deletion constructs (n=4) and 
AR42J Rat acinar cells (n=3) (* denotes P <0.05) with (dark grey) and without (light grey) 
chymotrypsin activator (i.e. trypsin), error bars represent standard error of the mean (SEM). (b) 
Representative chymotrypsin activity time-course measured by fluorescence (RFU) for untagged 
full-length (dark grey), Ex6 deletion (light grey), and control (darkest grey). The activity of the 
full length CTRB2 protein is 1.75-fold that of the truncated protein (P=0.023), and the latter is at 
background levels. (c) Amount of CTRB2 protein in cell lysates and media assessed by western 
blot analysis in HEK293T cells transfected with plasmids expressing full-length and Ex6 
deletion CTRB2 (three separate experiments). (d) Western blot images in (c) were taken using a 
ChemiDoc Touch Imaging System and bands quantified using ImageLab software. The amount 
of secreted proteins is summarized from triplicate experiments (** denotes P <0.001, error bars 
represent SEM). Almost all of the full length CTRB2 protein is detected in the media but almost 
none of the truncated protein (99.4% vs 0.1%, P=2.7x10-6). 
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Fig. S10: The full length CTRB2 protein localizes to the Golgi.  Normal pancreas-derived 
HPDE cells transiently expressing GFP-tagged full-length CTRB2 protein (green) 
immunostained with Golgi markers TGN46 (blue) and GM130 (red) show colocalization of the 
full length CTRB2 protein with the Golgi.  Representative single xy images are shown taken 
using a spinning disk confocal microscope using and a 63x oil objective and a sCMOS camera.  
A z-stack was captured and processed with deconvolution software (Slidebook).  DAPI stained 
nuclei shown in grey, scale bar = 10 µM. 
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Fig. S11: Live imaging of CTRB2 protein localization in HPDE cells.  HPDE pancreatic cells 
transiently expressing (a) GFP-tagged (green) full-length CTRB2 protein, and (b) truncated 
CTRB2 protein (with exon 6 deleted), for 48 hrs were incubated with ER-TrackerTM (red) for 
15 min and followed by live spinning disk confocal microscopy with a 63x oil objective every 3 
seconds at 37°C in 5% CO2.  (ii) shows an enlarged region (white square) from (i) for each panel.  
Scale bar = 10um.  The full-length CTRB2 protein shows vesicular localization and only little 
ER overlap (white arrows), whereas the truncated CTRB2 protein completely colocalizes with 
the ER stain. 
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Fig. S12: The truncated CTRB2 protein induces Endoplasmic Reticulum (ER) stress.  
PANC-1 pancreatic cancer cells transiently expressing GFP-tagged (green) (a) full length 
CTRB2, and (b) truncated CTRB2 protein (exon 6 deleted), for 48 hrs were paraformaldehyde 
fixed and immuno-stained with a marker for ER-stress, BiP (red). Elevated levels of BiP 
(HSPA5, red) were seen in cells expressing the truncated CTRB2 protein (green in b), but not in 
cells expressing full length CTRB2 (green in a). Representative single xy images are shown 
taken using a spinning disk confocal microscope using a 63x oil objective and a sCMOS camera.  
A z-stack was captured and processed with Slidebook deconvolution software. Scale bar = 10 
µM. 
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Figure S13: Overexpression of truncated (exon 6 deleted) CTRB2 leads to an increase in ER stress proteins. HEK293T (A) and 
PANC-1 (B) cells transfected with equal DNA amounts of empty vector, full length CTRB2, and truncated (exon 6 deleted) CTRB2 
constructs for 72 hrs. reveal an increase in ER stress proteins in the delEx6 transfections as compared to full length CTRB2. Three 
biological replicates are shown. 
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Table S2: Minor allele frequency (MAF) for 16q23.1 GWAS SNPs, 
CTRB2 Exon 6 insertion/deletion, and CTRB2/CTRB1 inversion 
variants found in Europeans via PCR genotyping. 

Genotype EUR CEU FIN GBR IBS TSI 
rs72802365 0.084 0.089 0.057 0.104 0.130 0.047 
Deletion 0.082 0.089 0.068 0.071 0.125 0.061 
rs72802342 0.081 0.000 0.068 0.088 0.120 0.047 
Inversion* 0.158 0.091 0.104 0.264 0.140 0.160 
* The inversion is the minor (derived) allele 
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Table S3: Primers used for genotyping the CTRB2 Exon 6 genomic insertion/deletion and the CTRB2/CTRB1 genomic 
inversion variants. 

Structural 
Variant 
Tested 

Forward Primer (5'-3') Reverse Primer (5'-3') Annealing 
Temperature Products 

Deletion TGACCTGGTGGAGTCTAGGG TCAGCATTCTGACCGTGAAC 56.6°C Reference: 1112bp product/Deletion: 528bp product 
TGACCTGGTGGAGTCTAGGG TGGCGTCTCCTCCTGCATG 62°C Reference: 409bp product/Deletion: no product 

Inversion 
CCTGCTCACTCTACCAAACC TGGAATTTTGCAACAAGGCG 56°C 

Reference (inversion): no product/                   
Ancestral (noninversion): 1974bp product 

GGGAACGTTTGAGCCTAGAG TGGAATTTTGCAACAAGGCG 56°C 
Reference (inversion): 1728bp/                         
Ancestral (noninversion): no product 
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Table S4: Imputation accuracy for two structural variants in the CTRB2 and 
CTRB1 gene region on chr16q23.1. 

Genotype                                                                 
(584 bp indel in CTRB2) 

No. of Individuals 
% Accuracy 

Imputed Genotyped 
Insertion/Insertion 72 70 97% 
Insertion/Deletion 15 19 73% 
Deletion/Deletion 9 7 78% 

Genotype                                               
(CTRB1/CTRB2 inversion variant) 

No. of Individuals 
% Accuracy 

Imputed Genotyped 
Noninversion/Noninversion 55 52 95% 

Noninversion/Inversion 26 29 88% 
Inversion/Inversion 14 14 100% 

A total of 96 DNA samples from PanScan III were genotyped by PCR for the CTRB2 exon 6 
deletion and CTRB1/CTRB2 exon 1 inversion (see Methods).  
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Table S5:  Association results for the 15 most likely functional variants at chr16q23.1 (LR < 1:1,000).  A Meta-analysis of PanScan I, II, 
III and PanC4 GWAS data after imputation with the 1000G European reference panel was performed. 

SNP Location 
(bp)^ P-value 

Likelihood 
Ratio   
(LR)* 

Posterior 
Inclusion 

Probability 
(PIP)% 

Odds Ratio     
OR (95% CI) 

r2 to best 
GWAS 
SNP+ 

r2 to 584 bp 
CTRB2 exon 6 

deletion 
variant 

EUR 
MAF# 

Conditional Analysis 

P-value 
conditioned 

on rs72802365 

P-value 
conditioned 
on deletion 

rs72802365 75,246,035 2.51E-17 1.0 0.13 1.36 (1.31-1.40) 1.00 0.69 0.083 1.000 0.007 
rs72802352 75,240,883 3.72E-17 1.5 0.15 1.35 (1.31-1.40) 0.99 0.68 0.082 0.589 0.011 
rs9936550 75,242,850 4.77E-17 1.9 0.06 1.35 (1.30-1.40) 1.00 0.69 0.082 0.974 0.013 

rs111852127 75,249,170 5.11E-17 2.0 0.09 1.35 (1.30-1.40) 1.00 0.69 0.083 0.375 0.011 
rs147630228 75,251,551 5.16E-17 2.0 0.09 1.35 (1.30-1.41) 1.00 0.69 0.083 0.628 0.011 
rs184458383 75,249,552 5.33E-17 2.1 0.09 1.35 (1.30-1.40) 1.00 0.69 0.083 0.350 0.012 
rs111869668 75,249,791 5.33E-17 2.1 0.09 1.35 (1.30-1.41) 1.00 0.69 0.083 0.350 0.012 
rs72802395 75,286,484 7.30E-17 2.9 0.09 1.35 (1.30-1.40) 0.99 0.68 0.083 0.552 0.008 
rs72802357 75,243,142 7.62E-17 3.0 0.18 1.35 (1.30-1.40) 1.00 0.69 0.082 0.619 0.018 
rs72802342 75,234,872 7.13E-16 27.1 NA 1.34 (1.29-1.39) 0.84 0.81 0.081 0.615 0.105 

rs371183658 75,234,273 7.78E-16 29.6 NA 1.33 (1.30-1.39) 0.82 0.82 0.081 0.602 0.107 
rs55993634 75,236,763 1.17E-15 44.2 NA 1.32 (1.28-1.37) 0.78 0.79 0.089 0.618 0.123 
rs72802391 75,273,829 4.46E-15 164.9 NA 1.35 (1.30-1.39) 0.85 0.57 0.075 0.923 0.073 
rs8056814 75,252,327 7.92E-15 290.3 NA 1.31 (1.27-1.36) 0.94 0.64 0.088 0.068 0.132 

rs68181471 75,252,820 1.14E-14 415.8 NA 1.31 (1.26-1.35) 0.93 0.63 0.091 0.192 0.121 
^ in human GRCh37/hg19 build coordinates 
* Likelihood Ratio (LR) is given as 1:LR to the most significant SNP, rs72802365 
% Posterior Inclusion Probability (PIP) for each SNP using SuSiE's Iterative Bayesian Stepwise Selection. A single credible set was observed at this locus. NA indicates SNPs 
not included in the credible set 
+ Linkage disequilibrium (r2) to best GWAS SNP rs72802365 
# Minor Allele Frequency in the 1000G EUR population 
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Table S6: Colocalization of expression QTLs (eQTLs) and pancreatic cancer GWAS signals. 
Dataset Tissue Gene Probability of Different Causal Variants Probability of Same Causal Variant 

GTEx Skin - Sun Exposed TMEM170A 1.0 <0.01 
GTEx Skin - Not Sun Exposed TMEM170A 1.0 <0.01 
LTG Pancreas TMEM170A 0.92 0.08 

GTEx Adipose -Visceral CFDP1 1.0 <0.01 
GTEx Adipose - Subcutaneous CFDP1 1.0 <0.01 
GTEx Skin - Sun Exposed CFDP1 1.0 <0.01 
GTEx Whole Blood BCAR1 0.69 0.31 
GTEx Pancreas CHST6 0.87 0.13 
TCGA Pancreas CHST6 0.90 0.08 
GTEx Pancreas CTRB1 0.99 <0.01 
GTEx Pancreas CTRB2 1.0 <0.01 

Colocalization was performed using the coloc package in R. 
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Table S7: Colocalization of CTRB2 splicing QTLs (sQTLs) and pancreatic cancer GWAS signals. 

Dataset CTRB2 Splicing Probability Different Causal Variants Probability Same Causal Variant 
LTG exon 5-6 0.11 0.89 
LTG exon 6-7 0.54 0.46 
LTG exon 5-7 0.13 0.87 

GTEx exon 5-6 0.09 0.91 
GTEx exon 6-7 <0.01 0.94 
GTEx exon 5-7 0.13 0.87 

Colocalization was performed using the coloc package in R. 
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Table S10: Differential expression of Endoplasmic Reticulum (ER) stress 
markers in pancreatic tissues from individuals with an increasing number of 
copies of the CTRB2 Exon 6 deletion allele. 

Gene 
GTEx LTG 

logβ P-Value logβ P-Value 
HSPA5 (BiP) 0.335 0.022 -0.103 0.421 
EIF2AK3 (PERK) 0.231 0.049 -0.183 0.264 
ERN1 (IRE1-alpha) 0.230 0.066 -0.391 0.074 
P4HB (PDI) 0.167 0.084 -0.246 0.300 
CANX (Calnexin) 0.098 0.211 -0.151 0.118 
DDIT3 (CHOP) 0.189 0.218 -0.065 0.681 
ERO1A (ERO1-L-alpha) 0.087 0.255 -0.156 0.171 
CALR 0.094 0.448 -0.140 0.159 
ATF6 0.083 0.537 -0.355 0.049 
XBP1 0.042 0.711 -0.375 0.108 
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Table S11: Colocalization of CTRB2 splicing QTLs and diabetes GWAS signals. 

Diabetes Dataset sQTL Dataset CTRB2 
Splicing 

Probability Different 
Causal Variant 

Probability Same 
Causal Variant 

T1D - Barrett GTEx exon 5-6 <0.01 1.0 
T1D - Barrett GTEx exon 6-7 <0.01 1.0 
T1D - Barrett GTEx exon 5-7 <0.01 1.0 
T1D - Barrett LTG exon 5-6 <0.01 1.0 
T1D - Barrett LTG exon 6-7 0.36 0.64 
T1D - Barrett LTG exon 5-7 <0.01 1.0 

T2D GTEx exon 5-6 0.05 0.96 
T2D GTEx exon 6-7 0.03 0.98 
T2D GTEx exon 5-7 0.08 0.92 
T2D LTG exon 5-6 0.34 0.66 
T2D LTG exon 6-7 0.51 0.49 
T2D LTG exon 5-7 0.50 0.50 

Colocalization was performed using the coloc package in R. 
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